
NASA Contractor Report 178377

ICASE REPORT NO. 87-65

ICASE
COMPARING BARRIER ALGORITHMS

CSCL 09[_

N88-1293_

U []C.Ia s

G3/o I 0 t 035E5

Norbert S. Arenstorf

Harry F. Jordan

Contract No. NASI-18107

September 1987

INSTITUTE FOR COMPUTER APPLICATIONS IN SCIENCE AND ENGINEERING

NASA Langley Research Center, Hampton, Virginia 23665

Operatedby the Universities Space Research Association

&

National Aeronautics and
Space Administration

I.,ingley Resmrch Center
Hampton, Virginia 23665

Comparing Barrier Algorithms

Norbert S. Arenstorf
and

Harry F, Jordan

Computer Systems Design Group

Department of Electrical and Computer Engineering

4 University Of Colorado, Boulder

A BSTRA CT

A barrier is a method for synchronizing a large number of con-

current computer processes. After considering some basic synchroniza-
tion mechanisms, a collection of barrier algorithms with either linear or

logarithmic depth will be presented. A graphical model is described

that profiles the execution of the barriers and other parallel program-
ming constructs. This m:odel shows how the interaction betweenithe
barrier algorithms and the work that they synchronize can impact t4heir

performance. One result is that logarithmic tree structured barriers
show good performance when synchronizing fixed length work, while
linear self-scheduled barriers show better performance when synchroniz-

ing fixed length work with an imbedded critical section. The linear bar-
riers are better able to exploit the process skew associated with critical

sections. Timing experiments, performed on an eighteen processor

Flcz/3g shared memory multiprocessor, that support these conclusions
are detailed.

Research was supported by the National Aeronautics and Space Administration under
NASA Contract No. NASI-18107 and Air Force Contract AFOSR 85-0189 while the

second author was in residence at the Institute for Computer Applications in Science

and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23665.

Additional support for both authors was provided under Contract No. NAG-I-640.

1. Introduction

A barrier is a method for synchronizing a large number of concurrent computer

processes. It is a convenient programming tool if the completion of one part of a
parallel program is required before any processes may begin execution of the next part.
This paper will develop and consider the relative performance of a variety of different
barrier algorithms. The performance of the barrier algorithms will be modeled in
terms of a shared memory multiprocessor. Interestingly enough, the interaction of the
barrier algorithms with the arrival behavior and departure requirements of the the
various processes may impact their performan¢_ 2i,,_tically. We will see that

different barrier implementations can deliver the best performance under differing run
time conditions. Actual timing data Will be considered.

In an attempt to provide for a fair comparison, all the barrier algorithms
presented will have the following points in common. All algorithms will reinitialize
themselves during use, so that the barriers may be used repetitively in loops, etc.
None of the barriers will have execution times, synchronizationai complexity or data

requirements greater than proportional to rip, where np is the nun/ber of processes
participating in the barrier. The barrier algorithms all function correctly, even if one
or more of the participating processes are suspended for a finite length of time at any
point during execution. Finally, each barrier allows for a sequential code block to be
executed by a single process; that is to say, when executing a barrier all processes will
synchronize (the e_itry phase), then one process will execute the sequential part,, then
all processes will be released (the signal phase).

The barrier is a control oriented synchronization. If one knows that all processes
have arrived at a particular point, then :indirectly one knows that all data references of
the previous parallel computation have been completed. It structures a program into a
sequence of parallel computations. Successive barriers approximate the well known
Fork - Join concept. A barrier is similar in nature to a Join followed by a Fork,
except that the number of processes necessarily remains fixed across a barrier, and
each process preserves its private memory state across a barrier. In a situation analo-
gous to the code block allowed between a Join and a Fork, the barrier algorithms
presented in this paper allow an optional sequential code block between the parallel
execution phases that are being synchronized.

The barrier was first proposed in 1978 as a hardware feature for the Finite Ele-
ment Machine being developed at the time at NASA Langley [1]. Since then the bar-
rier has evolved into a Widely used parallel control construct. Barriers are included in
several programming paradigms, includingf software planned for IBM's RP3 project
[2], Lusk and Overbeek's monitors [3], Jordan's programming language Force [4], and
the synchronization primitives described by Frederickson, Jones and Smith [5].
Sequent, Computer Systems includes a barrier implementation with the parallel pro-
gramming library supplied with their Balance 8000/21000 systems [6]. Although bar-
riers are widely used and the semantics are well understood, barrier implementations
have seen little attention in the literature, with Axelrod's analysis of the butterfly bar-

rier in [7] being a notable exception. This paper proposes to investigat e high perfor-
mance barrier algorithms in great detail and to present some new barrier concepts,
such as an alternating polarity, simple tree structured communications, and elimina-
tion of the need for atomic read--write cycles in shared memory. These algorithms will

be compared to existing algorithms when appropriate.

2. Argument for correctness of the algorithms

The barrier algorithms presented below will be directed towards a shared memory
MIMD multiprocessor. The barriers require both shared variables which can be
accessed by all processes, and private variables which are unique for each process. For
example, data structures used to implement synchronization must be kept in shared

-2-

memory; np, the number of processes, could be stored as either a shared or private
variable (since its value should not change); while the process id, a unique integer
between one and np that identifies each process, must be stored in a private location.

In the process of developing the algorithms, three basic concepts appeared. First,
some algorithms require only boolean variables in shared memory, while others use
spinlock routines that provide for atomic read--write access to shared memory loca-
tions. Second, the communication pattern of the entry phase may be either linearly or
tree structured. And finally, barriers may have symmetric entry and signal phases, or
the signal phase may be implemented as - _,_c:_le?,st identifying a reversal of polarity.

The hardware requirements for these algorithms are quite minimal. Only the
availability of shared and private memory is required by half of the algorithms. The
other algorithms require spinlock routines in addition. A spinlock is a software con-
struct which provides for mutual exclusion. Spinlocks typically are based upon a
hardware machine instruction allowing an atomic read--write cycle when accessing
shared memory. A spinlock atomically performs the following two actions: it waits
(spins) until its argument (called a lock) is clear, and then it sets its argument. Unlock
unconditionally clears (unlocks) its argument.

2.1. Synchronizing shared variables vs. locks

It should be reiterated that attention will be restricted to synchronization that

will work repetitively. Consider three different ways of synchronizing two processes
as shown in Figure 2-1. These two process synchronization "mechanisms" can be used
as building blocks to achieve larger barrier algorithms. The dimensions specified for
the data structures in Figure 2-1 are those required by typical algorithms when syn-
chronizing np processes. The first algorithm relies only upon shared variables. The
state transitions of the shared boolean variables are used as signals between different

processes. This algorithm will be contrasted with others that use spinlock routines.

The first algorithm, (1), works because only two processes access flag(i), and each
can cause only one of the two transition/state changes. First, in order to indicate for
the master that it has arrived, the slave(i} causes the negative transition of flag(i).
Once the master has verified that this negative transition has occurred, then the mas-
ter responds by sending the slave an exit signal, the positive transition of flag{i}. The
slave must wait for this positive transition to occur before it is released from the bar-
rier. There are two wait states, each of which is similar in function to a spinlock.

This algorithm splits neatly into entry and signal phases, and the master may execute
a sequential code block between its wait and set instructions.

A similar synchronization, (2) can be written using spinlocks. Algorithm (2b) is
semantically exactly equivalent to (2a), but (2b) expands the spinlock routines into
their logical components, allowing for an easier comparison with (1). The "&" symbol
in Figure 2-1 unites the two logically distinct operations of a spinlock. The slave
unlocks a lock that impedes the progress of the master, and then vice versa. Algo-

rithm (2) is roughly the same as (1}, except that the two possible waiting states are
implemented with spinlocks, each of which requires a lock; so separate entry and sig-
nal data structures must be used, resulting in twice the data requirement of (1). Algo-

rithm (2) does not require the spinlocks to be implemented with atomic read--write

cycles.

Another two process synchronization mechanism, one that has been suggested for
use with the proposed butterfly harrier [7], is shown in (3). Unlike the other two algo-
rithms, (3) is entirely symmetric with respect to the pair of processes that it synchron-
izes, which is why the processes are denoted as partners, rather than as master and
slave. Again, (3a) is coded using spinlock and unlock routines; (3b) is the semantic
equivalent. At first glance, algorithm (3) appears to be superior to (2) because the two
processes may proceed in parallel. However, the price to be paid for this is that there

-3-

(1)

Data required: Shared boolean FLAG(2..np)

Initialize: FLAG(*)= true

MASTER : SLAVE(i)

wait until FLAG(i)is false set FLAG(i) false
set FLAG(i) true wait until FLAG(i) is true

(2a)

Data required:
Initialize:

MASTER

spinlock(ENTR Y(i))
unlock(EXIT(i))

Shared boolean ENTRY(2..np), EXIT(2..np)
ENTRY(*) = locked, EXIT(*)= locked

SLAVE(1)

unlock(ENTRY(i))

spinlock(EXIT(i))

(2b)

Data required: Shared boolean ENTRY(2..np), EXIT(2..np)
Initialize: ENTRY(*)= true, EXIT(*)= true

MASTER SLAVE(i)

wait until ENTRY(i) is false set ENTRY(i) false

_z set ENTRY(i) true wait until EXIT(i)is _false
set, EXIT(i) false & set EXIT(i) true

(3a)

Data required: Locks SYNC(1..log2(nP), 1..rip)
Initialize: SYNC(*,*)= locked

PARTNER(i) PARTNER(j)

,pin- unlock(SY N C(le v ,j)} spin-unlock(SY N C(le v ,i))
, pinloc k(SYN C(lev,i)) spinioc k(SY N C(le v ,j))

(3b)

Data required:
Initialize:

PARTNER(i)

wait, until SYNC(Iev,j) is true
$: set SYNC(lev,j) false

wait until SYNC(lev,i) is false
8_ set SYNC(Iev,i) true

Shared boolean SYNC(1..log2(nP), 1..np)
SYNC(*,*)= true

PARTNER(j)

wait until SYNC(lev,i) is true
& set SYNC(Iev,i) false

wait until SYNC(Iev,j) is false
8_ set SYNC(lev,j) true

Figure 2-1 Three basic two process synchronization mechanisms

is no way to incorporate a sequential code block into this algorithm. More impor-
tant, ly, this algorithm is incorrect for repetitive barriers if it is implemented with an
unconditional unlock routine. For example, if PARTNER(i) is suspended after execut-
ing its unlock instruction, but PARTNER(j) continues execution and reaches another
barrier, then PARTNER(j) may unlock partner(i) a second time before PARTNER(i)
has had a chance to lock it. If this occurs, then the barrier fails and some processes

-4-

will deadlock on the final barrier to be executed. This problem may be corrected if the

unlock is replaced with a spin-unlock. A spin-unlock would wait until its argument is

locked, and then unlock it. With this understanding, we see that (3) has no advantage

over (2), since each now has a depth of two waiting statements. Once again, the read-
-write atomicity of the spinlock routine is unnecessary for this application.

Comparing (1), which is a master-slave algorithm, with (3), which is symmetric,
one can see that (3) has the same depth as (1), and exactly twice the computation.

Algorithm (3) is like a rearranged version of (1) united with its mirror image {master

and slave roles revers=a), ,.,it.b both halves running in parallel. In this fashion (3)

becomes a symmetric version of (1). However, algorithm (1) is simpler and sufficient to
synchronize two processes. Only synchronization mechanisms (1) and (2) will be used

to develop larger barriers in the sections below.

2.2. Symmetric structure vs. broadcast exit polarity

We have seen that the algorithms presented so far have distinct entry and signal

phases. The signal phase of a barrier may be implemented as the symmetric image of
the entry phase, with the exit signal propagating out in the same fashion as the entry

signal was communicated. Or one may implement the signal part using the polarity

exit mechanism presented below. Assigning a polarity to barrier iterations allows bar-
riers with a single data set to be executed repetitively, without requiring a signal phase

analogous to the entry phase.

Earlier it was postulated that if a shared boolean synchronizing variable was used

by only two processes, and each could initiate only one of the two possible state
changes, then no atomic read--write access would be necessary to insure correct syn-

chronization. The exit phase of a barrier requires a single process to essentially broad-

cast a signal to all others indicating that they may exit. Perhaps, it is possible for a
single separate shared data element to convey the exit information. Only one process

should be able to change the state of this exit variable, while all others would have

only a read capability.

Some problems come to mind immediately. The exit phase of the barrier may

need to serve to reinitialize the barrier so that it will function properly on its next

iteration. Is it possible to code an algorithm, one that uses a single exit data variable,
that will also correctly reinitialize itself for future iterations? The answer is yes, but it

requires an increase in the complexity of the algorithms. The introduction of a private

boolean variable indicating the polarity of the current barrier iteration is one way to
handle the reinitialization problem.

Successive barriers will alternate polarities. All processes will share the same
polarity on a given iteration of a barrier, defining the polarity for that barrier itera-

tion. The polarity is a private variable for each process, just as the process id is

private. Processes will compare their polarity with a shared exit variable. Note, at a
given point, in time, one process could be entering a barrier with one polarity, while

another process was still exiting the previous barrier of opposite polarity.

A basic broadcast exit signal mechanism is shown in Figure 2-2. The barrier exit

signal is the change of state of the shared exit variable. One can see that the slaves
will be able to correctly differentiate between successive exit signals, since the follow-

ing barrier will have the opposite polarity, and all slaves will be inhibited until the

master sends the next exit signal. This exit mechanism provides for a nearly simul-
taneous release of concurrent processes from a barrier, limited only by how the specific

machine architecture handles concurrent reads of a single shared memory location.

However this synchronization mechanism does not give the master any informa-

tion as to when and if all the slaves have received the exit signal. Any time a signal is

sent, there must be a two way flow of information to let the sender know that the

-5-

(4)

Data requirement:

Initialize:

MASTER

EXIT :ffi polarity
polarity := not polarity

Private boolean polarity
Shared boolean EXIT

polarityffi true, EXITffi false

SLAVES

wait until EXITffi polarity
polarity :ffi not polarity

Figure 2-2

t

Broadcast exit signal mechanism

signal has been received. If the master issues the next exit signal too soon, before all
slave processes have' quit waiting on the previous exit state change, then the barrier
would be incorrect. This issue is solved if the broadcast exit mechanism is interleaved

with a correct entry algorithm. In this fashion, the master would issue the exit signal
only when assured that all processes have entered the current barrier iteration. Thus,
indirectly, the master knows that all processes have "seen" the previous exit signal.

The addition of an alternating polarity to the barrier is compatible with the
semantic barrier concept, precisely since all processes are required to attend to each
iteration of a barrier. Thus if all processes are initialized to the same polarity, the9 we

see that it is impossible for processes to get their polarities out of sync, no _natter thow
the barriers are distributed in program code. Thus, a single master can _end n_any
slaves an exit signal.

An algorithm somewhat along these lines has been described in [4]. That algo-
rithm uses a system call to signal an event; and the operating system insures that all
the slave processes waiting for the event to occur, do in fact receive it.

(5)

Data requirement: Private boolean polarity
Shared boolean ENTRY(2..np), EXIT

Initialize: polarity= true, ENTRY(*)= false, EXITffi false

MASTER

for each i do
wait until ENTRY(i)= polarity

endfor

EXIT :ffi polarity
polarity := not polarity

SLAVES(i)

ENTRY(i) := polarity
wait until EXIT= polarity
polarity :ffi not polarity

Figure 2-3 Linear barrier with broadcast exit

Finally, the algorithms that use synchronization mechanism (1) require the signal
phase to reinitialize the data structure for the entry phase. With the use of the broad-
cast exit phase, the entry phases will need to reinitialize themselves. It turns out that
the same polarity state can be used to modify (1) in order to achieve this end. A
resulting linear algorithm, (5), is presented in Figure 2-3. Let the process with id ffi 1
be designated the master, while all other processes are slaves. The slaves are indexed
from 2 to np, with the slave index being equivalent to the process id. In (5) the mas-
ter receives signals indicating that all slaves have changed the state of their entry

-6-

variables. Then and only then does the master broadcast its change of state. Thus,

proper synchronization is insured. A tree structured version of this algorithm with

logarithmic depth will be developed in the next section.

2.3. Tree structure vs. linear structure

The next idea to be considered is what type of communication pattern to employ

within the entry phase of the barrier algorithm. Either a linear or trec structured

approach may be used. A linear approach tends to be simpler since it typically

req "-._sfoyer overhead calculations. However, a tree structured approach has loga-

rithmic depth. In order to develop a tree structured barrier, two arrangements of the

linear algorithm will firstbe considered. Consider the graphical representation in Fig-

ure 2-4 of the same algorithm outlined in Figure 2-3. In Figure 2-4, processes are

represented by vertical lines,and time flows downward.

If we think of the basic two process synchronization mechanism in terms of its

entry and signal components, then we see that the algorithm in Figure 2-4 works by

having a single master accept allthe entry signals,then executing the sequential part,

and then issuing the exit signal. The ordering of the acceptance of the entry signals is

arbitrary, but practical implementations will require a prc-schedulcd, fixed order.

Usually a Fortran style do loop is employed for this purpose. Np boolean shared

memory variables are required. This algorithm is coded in an extended Fortran as

bbrlln (linear broadcast barrier) in Appendix A. Also in the Appendix, a similar bar-

rier,with symmetric entry and exit phases instead of a broadcast exit,iscoded as bar-

lin.

There is an alternate linear design, as shown in Figure 2-5. Instead of having a

single process accept all the entry signals from its slaves;this design has each process

accept the entry signal from its next higher numbered neighbor, and then issue its

entry signal to the next lower numbered neighbor. In this manner, the entry signals

will propagate down to the lowest numbered process. This modified linear algorithm

requires a fixed ordering in itscommunication pattern. The processes numbered I and

np are special cases, thus this algorithm requires additional branching if a single pro-
gram guides all processes. Thus, this algorithm is less efficient than the previous one.

However, there is a point to be made here. Using only the two process synchroni-
zation mechanisms developed earlier, both of these linear algorithms successfully syn-

chronize many processes. It is possible for a single process to synchronize with several

neighbors, and it is also possible for processes to propagate several signals onward to

others. The point here is that if one accepts the validity of both of these algorithms,
then it is a simple matter to postulate the existence of a binary (or other dimensional)

tree structured algorithm. For the binary tree, at eaich node a process would accept

the entry signal from one neighbor, and then it would propagate this signal along with

its own presence to the next lower level of the tree. A binary tree structured algorithm

is presented graphically in Figure 2-6, and coded as bbrtre (broadcast tree) in Appen-
dix A. In Figures 2-6 and 2-7, array subscripts are shown in order to identify the

shared variable being operated on at each point in the tree.

This is a powerful algorithm. The depth is only 1 + [log2(nP)]. As with the

linear algorithms, only np boolean shared memory data elements are required. This

barrier is completely self resetting and airtight, in the sense that if one or more

processes are suspended during execution, the barrier is delayed but otherwise contin-

ues to function correctly.

While the depth is logarithmic, each stage of a tree barrier requires more compu-
tation than for a linear barrier, since not only must the synchronization be accom-

plished, but each process must first calculate with which neighbor to synchronize.
This calculation is further complicated if np is not constrained to be a power of two.

The algorithm shown in Appendix A dynamically calculates with which neighbors to

-7-

time idffi 1 idffi2 id=3 idffi4 id=$

key:

entry(2)

entry(3)

entry(4)

entry(5)

C

exit

wait until specified
0 _. variable is equal

to polarity

t_ _ = set specified variable _ = sequential
to polarity part (optional)

Figure 2-4 Linear barrier graph (nested entry structure)

key:

O=

idffil id=2 id=3 id=4 idffi5

entry(2) i

C

entry(4}l

entry(5}(

entry(3}_

S
_exit

wait until specified
vsriable is equal
to polarity

/_. _. set specified variable ta'-'3 = sequential
to polarity -- part (optional}

Figure 2-5 Linear barrier graph (propagated entry structure)

-8-

time

_t id :

key:

set
'_.. specified

IC" variable
to polarity

wait until 24

0-_ specified
variable
is equal
to polarity

sequential
part (optional)

,i"

exit

2 3 4 5

exit exit

6

i

i

exit

7 8 9

exit

J

exit

i

i

t

exit

10 11

exit exit bexit

Figure 2-6 Binary tree barrier with broadcast exit

synchronize. It requires about five primitive integer operations (shift, compare, add)

in order to calculate the neighbors id, at each stage of the entry phase. Surprisingly, a

version which precalculates these id's and then stores them in a private array, requires

nearly as many integer operations to fetch the numbers from the array. However,
some run time advantage would probably be achieved using the precaiculated

approach, at the cost of an additional data structure.

Instead of using the broadcast exit mechanism, it is possible to have a double tree

structured barrier, with the symmetric entry and signal phases. A graphical version of

this barrier is shown in Figure 2-7. For a hard coded example of this algorithm, see

bartre in Appendix A. The depth is now increased to 21og2(nP), but we can do away
with the polarity concept, simplifying the environment somewhat, and also (np-1)

processes are not all competing to read a single exit variable at once. The same shared

boolean data structure, an array indexed from 2 to np, is used by both the entry and

signal parts.

If one wanted to use spinlocks, then it is still possible to employ a tree structured

algorithm. Spinlock routines will usually be more expensive, but they may provide

superior performance on certain types of hardware (hardware interrupt driven lock

tables, for example). Barrier algorithms coded with spinlock routines require separate
data structures to be used for the entry and signal parts of the barrier, unless a broad-

cast exit signal is used. A tree barrier with broadcast exit and a double tree barrier,

both using locks, are coded as bbrtrl and bartrl, respectively, in Appendix A. These

are some barrier algorithms that use two process synchronization mechanisms as their

building blocks.

-9-

time
id :

key: 9C

. indicated
variable 3 i

wait until 2q
0-" clear

C
set

_-- indicated
variable

Qm wait until
set

-. sequential
part (optional)

1

I

lj

i

2 3 4 5

_4

m

7 8 9 10 11

m
l

J

11

Figure 2-7 Double tree barrier

2.4. Linear barriers with critical sections

Another quite different linear approach is possible, one that has traditionally been
employed. In this algorithm, a critical section using either an entry or exit lock is used
to protect a shared counter variable. Processes count in (except the last), and then
spin on the exit lock until the counter is equal to np, at which point they count out
(except the last). When all processes have counted out, the input lock is reset, allow-
ing the processes to reenter again on the next barrier iteration. Thus, the counter
variable swings between one and np, and is either (under protection of the entry or
exit lock) monotonically increasing or monotonically decreasing, until an endpoint is
reached, at which point it is reversed. Careful coding allows the use of only two locks,
and each process (except the last} requires two accesses into a critical section per bar-
rier iteration. Processes will be skewed in time somewhat as they are go through, one

by one, the entry and exit critical regions. The average depth of this algorithm is only
np, not 2np, since the entry and exit phases may effectively be overlapped, if there is
sufficient work between iterations of the barrier.

This algorithm is shown in Figure 2-8. The pseudo code shown below (Figures 2-8
& 2-9) is to be executed by all processes participating in the barrier. A modified ver-
sion of this algorithm is coded as barlok in Appendix A. Barlok has been modified to
allow a sequential part within the barrier, and to insure that the sequential part will
always be executed by the same process. On a side note, it may be desirable to insure
that the same process always executes the sequential part of a barrier. For example, if
there are private variables used within the sequential part on successive barrier itera-
tions, then allowing different processes to execute the sequential parts may introduce
unwanted non-determinism into a program's execution. Also, the sequential part of a

-10-

barrier is often used for file i/o; and on some machine architectures file i/o is
simplified if the same process always does the i/o.

Data requirement:

Initialize:

Locks ENTRY, EXIT
Shared Integer COUNTER
ENTRY= unlocked, EXIT = locked,
COUNTER= 1

ALL PROCESSES

spinlock(ENTRY)
if (COUNTER <np) then

COUNTER := COUNTER + 1

unlock(ENTRY)
spinlock(EXIT)

endif

if (COUNTER = 1) then
unlock(ENTRY)

else
COUNTER := COUNTER- 1

unlock(EXIT)
endif

Figure 2-8 Two lock barrier algorithm

A version of the two lock barrier that incorporates the broadcast exit/polarity
mechanism is given in Figure 2-9. Only one lock for the single critical section is
required. Under protection of the critical section, processes decrement the shared
counter. The last process to decrement the counter then assumes the role of master
and issues the exit signal to all the other processes. Once again, a modified version of
this algorithm is coded in Appendix A as bbrlok. The modified version allows a
sequential part and insures that the process with id= 1 will always be the one to exe-
cute the sequential part.

It should be noted that fetch and add [8] hardware can eliminate the need for criti-
cal sections entircly and reduce these algorithms to logarithmic depth. Tang and Yew
outline a barrier algorithm incorporating the use of fetch and add though Cedar primi-

tives [9]. However, that implementation requires subsequent barrier iterations to use
different data sets in order to guarantee correct execution free of race conditions.

-11-

Data requirement:

Initialize:

Private boolean polarity
Private integer mycount
Shared boolean EXIT

Shared Integer COUNTER
Locks ENTRY

polarityffi true, EXITffi false,
COUNTERffi np, ENTRYffi unlocked

ALL PROCESSES

,pinlock(ENTRY)
mycount :ffi COUNTER- 1
COUNTER := mycount

unlock(ENTRY)

if (mycount-- 0) then
COUNTER :- np
EXIT :ffi polarity

else
wait until EXIT=polarity

endif
polarity := not polarity

Figure 2-9 Single lock barrier with broadcast exit

3. A graphical run tlme parallel execution model

Why develop so many different barrier algorithms, when they all achieve the same
function? Obtaining the best run time execution speed usually is the primary concern.
In this section, a graphical model will be used to investigate the run time performance
of the barriers. Barriers tend to maximize the negative effects of uneven load balanc-
ing between processes between barrier iterations. However, this type of inefficiency is
due to the programming application, and is thus beyond the scope of this paper. What
is of interest here is the additional overhead, if any, introduced by the barrier algo-

rithm. Specifically, the interaction of the barriers with the parallel programming con-
structs that they synchronize will be examined. The analysis here will not attempt to
be exhaustive, it is instead an attempt to gain some insight into the run time behavior

of the different barrier algorithms.

Parallel execution within a given programming construct will be modeled using

profiles. Profiles are shown as two dimensional geometric shapes. A profile includes
within its perimeter all the computation corresponding to the programming construct
that it represents. On an x,y grid profiles are plotted by processes against time. As
in the previous graphs, the processes are plotted along the x axis, and time flows down-
ward along the y axis. Computation internal to a profile is not of interest. What is
shown by a profile is the time that each process enters and then exits a given con-
struct. We limit our attention to parallel programming constructs that are executed

(on each iteration) by all of the processes.

The power of the model lies in seeing how well different combinations of profiles
fit together. This model will consider three categories of parallel programming con-
structs: parallel work blocks, critical sections, and barriers. This programming model

-12-

supposesthat anarbitrary but fixednumberof processes execute a single program con-
sisting of these constructs. The goal is to minimize the execution time of a given
sequence of parallel programming constructs. This execution time is modeled by
measuring the elapsed distance along the y-axis occupied by the corresponding

sequence of profiles. No portion of a given profile may be superimposed on any part of
another profile. If adjacent profiles do not fit together exactly, then the resulting
white space is wasted in the sense that processes are just spinning, although this white
space may be semantically necessary. A key point here is that other constructs,
including the barrier itself, are free to exploit this white space without reducing the
overall performance. Timing runs supporting this analysis will be presented in the fol-
lowing section.

Parallel work blocks are assumed to be non-blocking constructs, consisting of

some scheduling mechanism which parcels out chunks of single stream work to the
various processes. These chunks of work may then be executed in parallel. The area
of a parallel work profile corresponds to the total computation and scheduling over-
head associated with that parallel work biock.

time

proeesses--a_

, ideal barrier

Je' " "'t" " • I fixed work
t ideal barrier

_ variable
work

ideal barrier

fixed work

_ critical sectionfixed work

ideal barrier

Figure 3-1
Profiles: ideal barrier

Critical sections provide for mutual
exclusion. The profile for a critical section
will, contain only the computation that a

process performs while it is actually within
the critical section. The time spent wait-

ing by processes that are temporarily
blocked by a critical section is shown as
white space in the model. This kind of
waiting is caused by the semantic concept
of a critical section, so it is not appropriate

.to include it as part of the cost of the
implementation of the critical section.

The barrier, another blocking con-
struct, is treated in a similar fashion.

Blocking that is semantically inherent to a
barrier will not be included within its

profile. Again, this kind of waiting is
shown as white space. Consider an ideal
barrier as shown in Figure 3-1. Since there

is no computational overhead associated
with an ideal barrier, the profile for this
barrier is shown as a horizontal line, with
no thickness. It will block the processes
that encounter it until all have arrived. If,

for example, several processes have encountered a barrier and these processes are wait-
ing for some stragglers, then this waiting is semantically inherent to the barrier and is
shown as white space. However, additional waiting or computation required only by

the specific implementation of a barrier algorithm will be included within the profile
corresponding to that barrier. Thus, the profiles for non-ideal, real barriers attempt to
show the overhead costs associated with the barrier implementation. Note, the profile
for a correct real barrier must include within its perimeter the profile of the ideal bar-

rier.

The absolute depth of a profile refers to the elapsed distance along the y axis,
meaning the elapsed time, that a profile would requii'eif it were sandwiched between
two ideal barriers. Under certain circumstances, adjacent profiles are able to over'ap

all or part of their execution. Overlap ddes not refer to physical superposition of the

-13-

profiles (which is not allowed); instead overlap refers to the situation where some

processes are still executing within one profile, while others are already executing
within the next. profile. Thus, the execution of separate constructs may be partially

overlapped in time. If overlap occurs between two or more successive profiles then one
can see that the resulting effective depth of a sequence of profiles will be less than the

sum of the absolute depths.

An interface between two adjacent profiles is defined as the exit contour of the

first profile taken together with the entry contour of the following profile. The degree

of overlap between two adjacent constructs depends upon this interface. Two general
situations can occur. Entry contours may be either pre-scheduled or self-scheduled

with respect to the process id. If processes must enter a profile in a specific order, then

the corresponding entry contour is pre-scheduled. Pre-scheduled entry contours may
or may not be able to overlap with uneven exit contours, depending on the order in

which processes are released from the exit contour. On the other hand, if processes

may enter a profile in any order, the entry contour is termed self-scheduled and it can

overlap as much as is possible with the preceding- exit contour. If an interface is pre-
scheduled, we plot the processes along the x axis in the order of their process ids, from

one to np. where np is the number of processes. However, if an interface is self-
scheduled, the processes are plotted from fa, te, t to slowe, t. The fastest process is

defined as the first process to enter (or exit) a given iteration of a parallel program-

ming construct. Likewise, the slowest process is defined as the last process to enter (or
exit) a parallel programming construct. In this fashion, all the processes may be

ranked from fastest to slowest. (Note, the designation of fastest or slowest may ivary
dynamically among the processes.)The ability to exchange the two orderings, either

from one to np or from fastest to slowest, requires that the processes involved be _airly

homogeneous. These two orderings of the processes will prove useful when analyzing
the interfaces between successive profiles.

Three parallel _york blocks interspersed with ideal barriers are shown in Figure
3-1. For the sake of simplicity, the optional sequential code blocks of the barriers are

ignored. The absolute depth of a parallel work block is given in (6), where W(id) is
the time that each process requires to do its share of the work. In the case of fixed

length work, the W(id)'s will all be the same, so the overall depth, Wap, is then

equivalent, to W{id). The absolute depth of a critical section, Cap, is given in {7),
where C{id) is the time each process spends inside the critical section. If C(id) is a

constant, then Cap simplifies to np*O(id). However, even if each process executes
the same code in a given critical section, C(id) may not be a strict constant. If the

time required for a process to signal that it is exiting a critical section is proportional
to the number of processes actively waiting for that signal, then C0d) has a depen-
dence on the number of processes seeking access to the critical section.

np

(6) Wnp = MAX W(id)
id- 1

(7) c°p = COd)
id- 1

The eight barrier algorithms developed earlier will be divided into the following
three classes: linear self-scheduled, linear pre-scheduled, and tree structured. The

profiles model will be employed to illustrate some differences in behavior among these

classes of algorithms. For each class of barrier, three cases will be examined: barriers

interspersed with fixed length work, barriers interspersed with pre-scheduled variable

length work, and barriers interspersed with fixed length work which contains a critical
section. When the barrier and work profiles are combined, the effective depth of the

-14-

barrier is defined to be the increase in depth over the absolute depth of the work

block.

3.1. Linear self-scheduled barriers

The single lock barrier is a linear barrier algorithm with depth proportional to

np. The profile of the single lock barrier has a self-scheduled entry contour, meaning
that the processes may enter in any order, but no faster than one at a time. Self-
scheduling is implemented through the use of critical sections internal to the barrier.
The two lock barrier is similar to the single lock barrier, except it has symmetric struc-

ture, releasing the processes one at a time, as well. Although the absolute depth of the
two lock barrier is twice that of the single lock barrier, when synchronizing fixed

length work, the effective depth of either of these barriers is np. This is apparent from

Figure 3-2.

a
Single loc_ barrier

(broadcast exit)

linear selfo
sched barrier

fixed work

linear self-
sehed barrier

variable
work

linear self-
sched barrier

fixed work

critical section

fixed work

linear self-
sched barrier

Figure 3-2

Two l_b)barrier

(symmetricstructure)

Profiles: linear self-sched barriers

time

variable work
(best case)

If the parallel work is of variable length, then the analysis becomes more compli-
cated. Let the work variation be pre-scheduled (no load balancing employed). Con-

sider, for example, if one work assignment (or process suspension) dominates the work
distribution. Considering the single lock barrier, the effective depth of a parallel work
block dominated by a single long work assignment will be close to zero. (See Figure 3-

2.) As the work load becomes more evenly balanced, the depth of the single lock

-15-

barrier increases and approaches np. For the two lock barrier, if the first process to be
released from the barrier receives this long unit of work, this process would be the last
one to enter the next barrier iteration, resulting in an effective barrier depth of close to

zero. However, if the last process released receives the dominating work assignment,
then although this process would still be the last one to enter the next barrier itera-
tion, the effective depth of the barrier is now np. Thus, for this example, the average

effective depth of the two lock barrier will be np/2, still linear but reduced by a factor
of two. Other distributions of the variable length work will show similar effects, the

degree of the reduction of the effective depth will depend on the exact distribution,
however, on the average, the effective depth of the two lock barrier synchronizing pre-
scheduled, variable length work is between np and np/2. So, in general, for the case
of variable length work, the single lock barrier shows substantial preformance

improvement over the two lock barrier. The pre-scheduled variable length work block
can be used to approximate the slight variations in the exit contour of a self-scheduled

parallel work block.

For the case of fixed length work with an imbedded critical section, we see that
both the single lock and two lock barriers are close to ideally efficient! Since the criti-
cal section requires processes to arrive in skewed order for maximum efficiency, we see
that it does not hurt if the barrier implementation lets the processes out in a skewed

fashion. And since the processes leave the
critical section in a skewed manner as well,

then if the barrier requires a skewed entry,
no additional performance penalty is
incurred, as shown in Figure 3-2a.

3.2. Linear pre-seheduled barriers

Instead of using critical sections, the

pre-scheduled linear algorithms require a
single master to accept the entry signals
from all other processes, one at a time, in a
predetermined order. The pre-scheduled
barriers require less time to complete each

stage of their algorithms, since they do not
require a critical section at each stage. A
profiles model of the linear pre-scheduled
barrier with broadcast exit is shown in Fig-
ure 3-3.

The linear barrier with broadcast exit

has a depth of np+ 1 for the case of fixed
length work. The symmetric pre-scheduled
linear barrier occupies the master process

throughout both the entry and exit parts of
the barrier. Thus, the effective depth of
this linear barrier remains 2*np for fixed

linear pre-

sched barrier
I L

fi:ied work

linear pre-
sched barrier

variable work
{worst case)

linear pre-ached barrier

_ _ I fixedwork

_ critical section
fixed work

linear pre-
ached barrier

Figure 3-3
Profles: linear pre-sched

w/ broadcast exit
barrier

length work, since the master must also
perform its share of the work. If the work distribution becomes variable, the pre-
scheduled linear barriers also show reduced depth but not to the extent of their self-
scheduled counterparts. For example, the worst case scenario pictured in Figure 3-3
could not happen if the entry contour of the barrier was self-scheduled.

When synchronizing critical sections, the effective depth of the pre-scheduled
linear barriers is not as good as the effective depth of their self-scheduled counterparts.
If the processes go through the critical section in the optimal order, ie, master first,
then slaves in the order of their process ids, then the effective depth of the barrier will

-16-

be close to optimal. However, if the master happens to be the last process to go

through the critical section, then the next barrier iteration will have its full depth.

Thus, one would expect some reduction of the effective barrier depth when synchroniz-

ing work containing critical sections, but not the near optimal behavior of the self-

scheduled linear barriers.

3.3. Logarithmic tree barriers

The tree barriers have depth logarithmically proportional to np. The profiles for

the tree barriers, as shown in Figure 3-4, are quite simple, since they are rectangular in

shape, with flat entry and exit contours. The tree barriers also are analyzed for each
of the three conditions above, fixed length work, variable length work, and work con-

taining a critical section, however, the analysis will be much simpler. Unlike the linear

barriers, the effective depth of the tree barriers is nearly independent of the type of

parallel work that they synchronize. No matter in what order processes arrive, each

process, including the last, must go through all the stages of the tree. If the process
arrival times are skewed, some variance in the effective depth results since the time a

process spends at each stage varies slightly depending on whether it is playing a mas-
ter or slave role at that node. But this is only a minor effect. Thus, even if there is a

wide variance in process arrival times, the effective depth of the tree barrier remains

nearly constant•

The analysis for tree barriers with broadcast exit is similar. The only difference is
that the broadcast exit reduces the depth from 2*logo(np) to log2(nP)+ 1. If locks are

used, then each stage of the tree would be expected'to have a longer execution time

compared to trees that use only boolean variables, resulting in a longer total execution
time. Otherwise, the analysis is unchanged.

4. Timing results

Timing runs on an actual shared memory multiprocessor support the predictions
derived from the profiles parallel execution model developed above. Several experi-

ments timing all eight barrier algorithms were run on a Flexible Computer Corpora-

tion Flez/32. In order to evaluate the effect of the number of processes (rip) on bar-

rier performance, np was varied from two to eighteen in increments of two. Barriers

synchronizing fixed length work, variable length work, and fixed length work with an
imbedded critical section were timed in three separate experiments.

4.1. Methodology

Each experiment consisted of nine trials; one trial for each of the eight barrier
• • . /.

algorithms, and one trial simulating the behavior of the ideal barrier• For each of the
eight "regular" trials, a barrier followed by the parallel work block corresponding to
that experiment was placed in a loop, and execution of this loop was timed for 100000
iterations. The timing of the ideal barrier when synchronizing the various work blocks

was simulated using some algorithms described below. The elapsed time of the ideal
barrier trial was then subtracted from the elapsed times for each of the other eight tri-

als. These resulting times were then divided through by the number of iterations of

the loop, yielding a measure of the per iteration overhead (effective depth) imposed by

each of the eight barrier algorithms.

The fibst experiment consisted of timing barriers that synchronized a fixed length

parallel work block. The fixed length work required each process to execute 30 itera-
tions of single precision multiply additions (mul-adds) and some associated subroutine

linkage. This number of mul-adds is sufficient to insure that successive barriers will

not attempt to overlap with each other. Strictly private operands were used. A bar-

rier followed by the fixed length work block was placed in a loop and timed for 100000

-17-

iterations. This measurement was repeated for each of the eight barrier algorithms.
The ideal barrier timing loop was simulated using a very simple algorithm: time only

the fixed length work for 100000 iterations.

The second experiment timed barriers synchronizing variable length, pre-
scheduled, parallel work blocks. In a set up phase, processes iteratively filled private
arrays, called myrand, with 100000 random numbers. Processes also cooperated to
determine the maximum random number that was generated on each iteration, and
these maximum values were stored in separate private arrays, called maxval. The

random numbers ranged between 30 and 59, with a fiat distribution among these
values. A linear congruentiai random number generator was used, and each process
calculated an initial private seed by adding its process |d to a single shared "starter"
integer. Each iteration of the variable length work block required the processes to pull
a random number from their rnyrand arrays, and then they would execute that many

iterations of single precision mui-adds. For the timed part of this experiment, a bar-
rier followed by the variable length work block was placed in a loop and timed for
100000 iterations. The ideal barrier timing loop was simulated by timing a single pro-

cess executing 100000 iterations of "work" with no barriers; each "work" iteration con-
sisted of retrieving the maximum random number from the maxval array and then

executing that many mul-adds. In this
[tree barrier

fixed work

tree barrier

variable work

tree barrier

fixed work

critical section

fixed work

tree barrier

Figure 3-4
Profiles: tree struct, barrier

manner an ideal barrier is simulated, since
an ideal barrier would have to wait, on

each iteration, for the process with the
most work to finish.

Finally, the third experiment timed
barriers synchronizing fixed length work
with an imbedded critical section. Each of
these work blocks consisted of 15 mul-

adds, followed by a critical section, which
enclosed a single mui-add, followed by 15
more mul-adds. Since each of the np

processes must execute the critical section
in turn along with its private mul-adds;
the ideal barrier timing loop is simulated
by timing 30+np mul-adds and np sub-
routine linkages (in order to simulate the
effects of the spinlocks) on each iteration.
This experiment suffers from the difficulty
of approximating the ideal barrier exactly,
since the bus contention produced by the
critical section cannot be exactly
accounted for, and this overhead could

thus be incorrectly attributed to the barriers.

These three experiments are interesting because they approximate some typical

parallel work scheduling mechanisms: pre-scheduling and self-scheduling [4]. Pre-
scheduling does not have the synchronization overhead required by self-scheduling
and is efficient when work iterations are constant in their execution time. Pre-

scheduling is often employed to schedule (non-branching) parallel loops. With pre-
scheduling, work iterations are divided up evenly among processes, irrespective of the
execution time required by each iteration. As is shown in Figure 4-1, if processes enter

a homogeneous pre-scheduled work block in unison, they probably will exit in a step
function, since np likely will not divide evenly into the number of work iterations.
The first experiment timing fixed length work approximates a pre-scheduled parallel
loop where np does divide evenly into the number of loop iterations. However, even if
processes exit in a step function, we still have the situation where many processes exit

-18-

the work block at once.

Self-scheduling provides for load balancing and is efficient when work iterations

vary in their execution times. With self-scheduling, under protection of a critical sec-
t.ion, processes take the "next" available work descriptor from a shared scheduling
mechanism whenever they are ready for additional work. In spite of the load balanc-

ing concept, processes will be somewhat skewed in time as they exit a self-scheduled
parallel work block. This skew results from variance in work execution times and]or
the effect of the critical section used to schedule the work iterations. The second and

third experiments approximate barriers synchronizing self-scheduled work since they
model variable length work and the effects of critical sections, respectively.

4.2. Computing environment

These three experiments were run on a Flex/32 shared memory multiprocessor
consisting of a shared memory store and a set of single board microcomputers with
true private memory on each board. Processes may be bound to processors, so unex-
pected process suspension is not a major issue. The Flex/32 supports efficient
implementation of spinlocks through a
hardware test and set machine language
instruction that is available to the user.

Memory accesses into private data struc-
tures and instruction fetches do not inter-
fere with shared memory cycles on the dual

common bus. A proprietary architecture
interfaces local busses with a dual common
bus connected to shared memory. Unfor-

tunately, Flexible Computer Corporation
has not published detailed descriptions of
these interfaces. Flexible provides MMOS,
its distributed "multicomputing" operating

system [10], to supervise parallel programs.
The Flex/32 used belonged to the NASA
Langley Computational Structural
Mechanics Group in Hampton, Virginia.
NASA's Flex/32 is configured with eigh-
teen processors able to run in parallel.

rt
|

ideal barrier

pre-scheduled
work

Example: Let np ffi 4. If there are 15
units of work to be scheduled, with
pre-scheduling each process re-
ceives either 3 or 4 work iterations.

Figure 4-1
Profiles: a pre-sched work block

4.3. Sources of timing error

Before describing the curves, let us
examine some sources of timing errors.
The clock function on the Flex/32 is imple-

mented through software using a system

interrupt. These system interrupts
increment a private clock (an integer variable). The timer granularity was one second;
since 100000 iterations were timed, the timing granularity per iteration is is reduced to

.01 millisecond (ms}. Since the effective depth of the barriers per iteration was calcu-
lated as the difference between two elapsed times, the error due to timing granularity

(per iteration) is within ± .02 ms. Over twenty four hours of parallel cpu time was
required in order to achieve this low timing granularity.

There is an additional source of error. Each processor receives the system inter-

rupt at the specified frequency. These interrupts occur asynchronously for the
processes in a round robin fashion. The duration of this interrupt has been measured

-19-

to be approximately .3 ms in duration. In order to minimize the effects of the system

interrupts, the timing program was compiled with a configuration specifying a fre-

quency of only one interrupt per second, hence a one second timing granularity. (A
lower frequency of interrupts is not possible under MMOS.) A .3 ms interrupt per

second represents only .03/t/o of cpu time per processor. However, since the interrupts

occur asynchronously, when all 18 processors are being used, then during .54_ of the

time one of the processors will be servicing the interrupt. This is the parameter of

interest when timing barriers! Fortunately, this magnitude of process suspension will

not significantly distort timing measurements. It should be noted that NASA's

Flex/32 has a default configuration of 50 MMOS system interrupts per second. While
this configuration reduces the timer granularity to 20 ms, the percentage of time dur-

ing which one of the processors is suspended is increased to a whopping 27t_o, clearly

unacceptable for timing barriers.

In order to insure that the compiler expands the timing loops identically for each

of the barrier algorithms being timed, the barriers were executed via subroutine calls

from within the timing loops. In this manner all the timing loops are guaranteed to
have the identical machine code, thereby eliminating a subtle source of timing bias

that could be present if the barriers were expanded in-line within the timing loops.

4.4. Results

The results for each of the three experiments are plotted in Figures 4-2, 4-3, and
4-4. Each figure shows curves corresponding to the various barriers, with different

values of np plotted against effective execution time (milliseconds per barrier itera=

tion). The effective execution time of a barrier is defined as the difference between the
execution time of the work and barrier combination and the execution time of the

work synchronized by an ideal barrier. All three figures are plotted using the same

time scale, allowing for comparison between figures.

For the case of barriers synchronizing fixed length work, Figure 4-2 plots the

observed effective depth of all eight barriers against np. One observation is that the

logarithmic tree barriers show better performance than the linear barriers, even for

small values of np. Also, the broadcast barriers (those using the polarity exit mechan-
ism) show superior performance than their symmetric (identical entry g3 signal struc-

ture) counterparts. Another observation is that the barriers that use spinlock routines

show marked performance degradation as np becomes large. This effect may be attri-
buted to increased bus competition that forces shared memory bus requests to line up

in a queue. If many processes are competing for access to a lock, one might think that
no performance degradation would result, since one of the processes should be succeed-

ing, even if others are having their bus requests delayed. This is indeed the case; how-

ever, inefficiency is introduced when the owner of a lock must compete for shared bus
access in order to unlock it. If 18 processes are competing randomly, the average

unlock command requires around 17 attempts before succeeding, assuming a single
shared bus with random arbitration. The situation with Flexible's dual bus is less

clear, but this same type of effect is probably occurring. Since the critical sections
themselves are very short, increasing the number of bus cycles required by the unlock

instruction will significantly degrade performance, and this is evident from the plot.

Apparently, it is the read--write cycles that place the greatest burden on the shared
memory bus. The bus contention appears to be much less for the barriers that do not

use spinlocks.

Figure 4-3 shows the barrier performance when synchronizing variable length
parallel work blocks. As the profiles model predicts, the linear barriers are better able

to exploi_ the variation in process arrival times. One interesting feature is that the
linear barriers with broadcast exit, do a better job than those that have linear exit

phases. In efforts to prevent visual clutter, Figures 4-3 and 4-4 do not plot curves for

-20-

1,3

1,2

1,1

1,O

,9

,8

,7

,fi

,5

,4

effective depth

(milliseconds)

np, the number of processes

I I I
14 16 18

,barlok

bbrlak

]rtrl

bbrtrl
bartre
barlln

bbrtre
bbrlin

barlin:
barlok:
bartre:
bartrl:

bbrlin:
bbrlok:
bbrtre:
bbrtrl:

linear(pre-sched), no locks,
linear(self-sched), locks,
treestructured, no locks,
treestructured, locks,

linear(pre-sched), no locks,
linear(self-ached), locks,
treestructured, no locks,
treestructured, locks,

symmetric entry & signal phases
symmetric
symmetric
symmetric

broadcastexitsignal
broadcast
broadcast
broadcast

Figure 4-2 Timing results for barriers

synchronizing fixed-length work

-21-

effective depth

(milliseconds)

i ,1-- her!oK

1,0-

5I- , /

31-- /-_- Oarlin
I -'_ _ oDr_re
2[-- /""// __ /bbrl In
l /_..,.,,___/b brloK

0 2 4 6 8 i0

np, the number of processes

no locks, symmetric entry & signal phases
barlin: linear (pre.sched),
barlok: linear {self-sched), locks, symmetric
bartre: tree structured, no locks, symmetric

bbrlin: linear (pre-sched), no locks, broadcast exit signal
bbrlok: linear (self-sched), locks, broadcast
bbrtre: tree structured, no locks, broadcast

Figure 4-3 Timing results for barriers
synchronizing variable-length work

-22-

effective depth

(milliseconds)

1,0-

,9 -

,8 -

,7 -

,6 -

,5 -

,/4 -

,3 -

,_) -

,1 "

I
0 2

barlin:
barlok:
bartre:

bbrlin:
bbrlok:
bbrtre:

_bartre

,/,barlln
j.--_barlok__ _bbflln

bbrlok

I I I I I I I I
4 6 8 10 12 14 16 18

np, the number of processes

linear (pre-sched), no locks,
linear (self-sched), locks,
tree structured, no locks,

linear (pre-sched), no locks,
linear (self-ached), locks,
tree structured, no locks,

symmetric entry & signal phases
symmetric
symmetric

broadcast exit signal
broadcast
broadcast

Figure 4-4 Timing results for barriers

synchronizing fixed work containing
a critical section

-23-

the tree barriers that use locks. However, timing measurements were made for these

algorithms as well, and the tree barriers with locks showed substantially greater over-
head than the tree barriers without locks.

Figure 4-4 plots the barrier performance when synchronizing work blocks with
critical sections. For the case of critical sections, the_barriers that had the worst per-

formance in the fixed length work experiment now show the best performance! Even

for the larger values of np, the linear barriers have a small depth that remains nearly
independent of np, whereas the tree structured barriers show their normal logarithmic
growth. Although Figure 4-4 may look cluttered, it would be misleading to pr-vide
more detail by enlarging the time scale since the timing granularity is within -+ .02
ms.

5. Conclusions

Three concepts were isolated in the development of these barrier algorithms. A
barrier may have linear or tree structured communication patterns. A barrier may
have symmetric entry and signal phases, or the signal phase may use a single broadcast
exit signal. And synchronization within a barrier may rely solely upon memory
accesses into shared data structures, or algorithms may use locks and their associated
spinlock routines. For thesake of completeness, and to provide for a thorough founda-
tion upon which to make comparisons, all eight combinations of these three concepts
were realized as barrier algorithms. Specifying which of these barriers is the "best" is

not so easy a task, since there are several trade offs involved and different maqhine
architectures may favor different barrier implementations. I !

5.1. Analysis

If we have parallel routines that can be executed by an arbitrary number of
processes, then the apeedup of a parallel routine can be defined to be the ratio of the
single process execution time of the routine (without synchronization overheads)

against, the parallel execution time (including synchronization overheads). Efficiency is
defined as the ratio of the speedup to rip. A parallel work load that is not evenly bal-

anced among processes between barrier iterations is a primary cause of loss of
efficiency. The barrier algorithm itself may also contribute to the inefficiency of a
parallel program.

Introducing optimized barriers into existing programs tends to result in only
minor improvement in the speedup if these programs were not "barrier bound" to
begin with. Optimizing the barrier's execution time delivers instead a different payoff:
the threshold size of work blocks that may profitably be parallelized is decreased.

Equation (8) shows the formula for speedup when considering only a single parallel

work block followed by a barrier, where Wnp is the time required for np processes to
execute the parallel work, W 1 is the single process execution time, and Bnp is the

effective barrier execution time. If Wnp _>_ Bnp , then decreasing Bnp will not

improve the speedup by much. However, if Bap is of similar or greater magnitude than

Wnp, then decreasing Bap will substantially increase the speedup. Thus reducing Bap ,

the barrier effective execution time, improves the speedup when small chunks of work

(followed by a barrier) are parallelized, and also allows programmers to profitably
employ barriers to synchronize yet smaller parallel work blocks.

W 1

(8) 8Peedupnp ffi Wup. kBn p

-24-

When synchronizing 18 processes, the effective execution times of these barriers
on Flex/32 ranged between .12 ms to 1.32 ms across all the experiments; with ranges
of .26 ms to 1.32 ms for fixed length work, .15 ms to 1,07 ms for variable length work,
and .12 ms to .38 ms for fixed length work with an imbedded critical section. The
variance in these times is mostly due to the linear algorithms, whose performance is

quite dependent on the type of work that they synchronize. The tree barriers had
much more stable execution times across the experiments. For reference, when syn-
chronizing 18 processes, bartre ranged between .38 to .44 ms per iteration across the
three experiments, and bbrtre ranged between .26 to .29 ms.

In order to place the barrier execution times into perspective, let us compare their
effective depth with the execution speed of the following single precision Fortran vec-
tor calculation: C(i) = C(i)+A(i)*B(i). The National Semiconductor NS32032s used
in the Flex/32 (Greenhills compiler) require about .038 ms to compute this sum and
product for each iteration of the vector index i. This measurement includes Fortran
DO loop overhead and index calculations as well as the floating point multiplication
and addition. Thus, the range of barrier times, .12 to 1.32 ms, maps into a range of 3
to 35 of these sequential vector element multiply-additions. As an example, the
effective depth of bbrtre synchronizing 18 processes, .26 ms, is roughly equivalent to 7
of these vector element multiply-additions.

The primary advantage of the tree barriers is their logarithmic depth. As the
number of processes, np, becomes large, this advantage becomes overwhelming, as
demonstrated in Figure 4-2, the timing results for barriers synchronizing fixed length
work. Although the per stage execution times of the tree barriers are higher than
those of the linear barriers, considering Figure 4-2, we see that the tree barriers would

all be expected to overtake their linear counterparts as np becomes large enough. For
example, using the results obtained on the Flex/32, bbrtre would be expected to over-
take even bbrlin, the most efficient linear barrier synchronizing fixed length work, for
values of np near 20. Yet, the linear barriers are able to improve their performance as
process arrival times become increasingly staggered, while the depth of a tree barrier is
nearly invariant with respect to process arrival behavior. For example, if there are
critical sections between successive barrier iterations, then the self-scheduled linear
barriers (barlok. bbrlok} are almost ideally efficient, while the depth of a tree barrier

remains proportional to logo(np).

The tree barriers presented in this paper have a logarithmic depth similar to that
of the proposed butterfly barrier [7]. However the data requirements and synchroniza-
tional complexity of the trees are substantially lower, both O(np), rather than

O(np*log2(np} } as is the case with the butterfly barrier. Synchronizational complexity
is defined as the number of communications between processes. Consider the tree bar-

rier, removing the exit phase, in relation to the butterfly barrier. If one takes np
trees, letting each process be the root of one of these trees, and then one superimposes
all np of these trees removing redundancies, then the butterfly topology results. Thus
symmetry is achieved at a cost of superimposing np master-slave tree topologies. The
butterfly barrier distributes the function of rna,ter to every process, requiring each
process to determine independently that all others have arrived. One could argue
that, depending on machine architecture, the butterfly barrier would probably have
inferior performance compared to the tree, due to the sheer magnitude (

O(np*iog2(np))) of shared memory accesses. While the inherent symmetry of the
butterfly barrier is aesthetically appealing, this is quite a price to be paid for that sym-

metry.

On the Flex/32, the tree barriers that use only controlled access to synchronizing
variables are more efficient than those that use spinlocks. One observation is that the
tree barriers using locks tended to show nearly linear depth on the Flex/32, due to the
bus contention problem caused by the layers of spinlocks. In fact, the indivisible

-25-

read--write bus cycles are unnecessary for the tree barriers, and they tie up the shared

memory bus(es) longer than necessary• In general, spinlocks tend to require subroutine
linkage or possibly inefficient operating system calls, and the spinlocks involve addi-
tional computational steps than the set/clear mechanisms. However, one should keep
in mind that spinlocks may provide superior performance on machines with special
hardware supporting locks•

The issue of whether to use spinlocks or not is a different matter all together for
the linear barriers. The linear spinlock barriers allow the processes to arrive in any
order, nell-scheduling the entry into the critical section, and they very effectively
exploit any variation in their arrival times. The pre-schedulea linear barriers (using
set/clear mechanisms) require a fixed order of arrival of the processes in order to
achieve their best performance. These barriers are also able to exploit variations in
process arrival times, but to a lesser degree than their self-scheduled counterparts.
Thus, the self-scheduled barriers that use spinlock routines are appealing. However,
consider the following trade off. On one hand, as demonstrated in Figures 4-3 and 4-4,
the self-scheduled algorithms have better performance when process arrival patterns
are significantly skewed. However, due to the critical sections, each stage of the self-
scheduled barriers requires more execution time than the corresponding stage of the
pre-scheduled barriers. This situation occurs even on the Flex/32 which supports a
machine language test and set instruction used to implement the critical sections. So
on the other hand, when processes arrive all at once and the effective depth of a linear
barrier is the sum of its stages, then the linear pre-scheduled barriers show better per-
formance than the self-scheduled barriers, as shown in:Figure 4-2. i

• i t.

All of the barrier algorithms developed in this paper have analogoius versions
using either symmetric entry and Signal phases, or the broadcast exit/polarity!idea
developed above. On the Flex/32, the broadcast versions show superior performance
than their symmetric counterparts. The broadcast exit reduces the exit depth from np
or log2(n p) to one, while requiring only minimal computation. If the underlying
machine hardware supports true parallel reads of shared data, then the broadcast exit
mechanism is almost ideally efficient. If the machine hardware does not support true
parallel reads, then the situation where many processes compete to read the exit vari-
able is like a linear critical section, but with a very short time quantum, a single
shared memory bus cycle. Given this situation, a very large number of processes, and
a machine with multiple, hashed, shared memory modules, where memory references to
distinct modules may proceed in parallel, then the symmetric tree barriers (bartre,
bartrl) could conceivably yield better performance since they eliminate the competi-
tion to read the single exit variable. Care would have to be taken to insure that the
synchronizing variables are kept in different memory modules.

5.2. Recommendations

It, is an interesting result that the tree barriers show better performance for the
case of fixed length work, while the linear self-scheduled barriers show improved per-
formance for variable length work and better performance for fixed length work that
contains a critical section. One consequence is that linear barriers are well suited to
synchronizing self-scheduled parallel loops, while tree barriers are better suited to syn-
chronizing pre-scheduled homogeneous loops. For finely tuned applications, it may be
desirable to tailor the barrier to the work it synchronizes in order to achieve optimal
performance. Perhaps in the future, an intelligent compiler may be able to make this
decision on a case by case basis. However, in the present day for general applications
it would seem easier to decide on a single default barrier in order to insulate the paral-
lel programmer from this type of decision.

Before selecting a default barrier for use on a particular machine architecture, it
would be wise to try out several of the algorithms, due to the wide variance and

-26-

peculiarity of the shared memory multiproeessors currently available. However, if gen-
eral recommendations can be made, then the barriers should be chosen based on what-
ever de._irable theoretical attributes they possess. For larger values of np (rip > "8),
bbrtre, the tree broadcast barrier without locks, is recommended for general applica-
tions due to its logarithmic depth and excellent execution times. For the smaller
values of np (np< _8) and/or applications with many critical sections, bbrlok, the
self-scheduled linear barrier with broadcast exit is also a good choice. This barrier

always delivers good performance for small values of np, and for larger values of np it
performs well when it is able to exploit the run *_me conditions associated with
significant process skew. Both of these barriers, coded in an extended Fortran, are
shown in Appendix A.

-27-

References

Ill

[2]

[3]

[4]

[5]

It. F. Jordan, "Special purpose architecture for finite element analysis,"
Proceedings of the 1978 International Conference on Parallel Processing,

August, 1978, pp. 263-266.

G. Pfister, W. Brantley, D. George, o q_,_oy, W. Kleinfelder, K. McAuliffe, E.
Melton, V. Norton, and J. Weiss, "The IBM research parallel processor proto-

type (RP3): Introduction and Architecture," Proceedings of the 1985 Interna-
tional Conference on Parallel Processing, August, 1985, pp. 764-771.

E. Lusk, R. Overbeek, "Use of monitors in Fortran: A tutorial on the barrier,
self-scheduling do loop and askfor monitors," Argonne National Laboratory
Report No. ANL-84-51, Argonne, Illinois, June, 1985.

H. Jordan, "The Force," The. characteristics of _ algorithms , L. Jamie-
son, D. Gannon, and R. Douglass, Eds., Chapter 16, MIT Press, 1987.

[6]

P. Frederickson, R. Jones, and B. Smith, "Synchronization and control of paral-
lel algorithms," Parallel Computing, Vol 2, No. 3, pp.255-264 (Nov. 1986).

| i
A. Osterhaug, "Guide to parallel programming on Sequent Computeir Systems,

N

Sequent. Computer Systems, Inc., Beaverton, Oregon, 1985.

[7] T. S. Axelrod, "Effects of synchronization barriers on multiprocessor perfor-
mance," Parallel Computing, Vol 3, No. 2, pp. 129-140 (May 1986).

[8] A. Gottlieb, R. Grishman, C. Kruskal, K. McAuliffe, L. Rudolph and M. Snir,
"The NYU Ultracomputer - Designing an MIMD shared memory parallel com-
puter," IEEE Trans. on Computers, Vol. C-32, No. 2, pp. 175-189 (Feb. 1983).

[9] ,,r_ RP. Tang, P. Yew, t_roces.or self-scheduling for multiple-nested parallel loops,
Proceedings of the 1986 International Conference on Parallel Processing,
August, 1986, pp. 528-535.

[10] Multicomputing multitasking operating system {MMOS) reference manual, Flexi-
ble Computer Corporation, Dallas, TX, 1986.

-28-

Appendix A

Fortran code for

Barlln, Barlok, Bartre, Bartrl, Bbrlln, Bbrlok, Bbrtre, Bbrtrl

The following eight barriers, coded in an extended Fortran, are included in this

Appendix. The extended Fortran ollo_q Private and Shared declarations as well as

spinlock and unlock primitives. In all cases, the unlock statement denotes a simple
unconditional unlock routine.

barlln: linear (pre-sched), no locks, symmetric entry & signal
barlok: linear (self-sched), locks, symmetric
bartre: tree structured, no locks, symmetric
bartrl: tree structured, locks, symmetric

bbrlln: linear (pre-sched), no locks, broadcast exit signal
bbrlok: linear (self-sched), locks, broadcast
bbrtre: tree structured, no locks, broadcast
bbrtrl: tree structured, locks, broadcast

These barriers require a single a priori initialization. One process must execute a
call to Sh_jnit once before any barriers are executed, in order to initialize the shared

variables. Normally the process that forks the other processes can call Sh_jnit. The

argument to Sh..init should be np, the number of processes participating in the bar-
rier. Also each process must execute a call to Pr_jnit once in order to initialize its

private data structures. The arguments to Pr_jnit are the process id, (numbered from

one to np, unique for each process) and rip, the number of participating processes.

These barriers are coded using subroutines calls. The process with id--1 will

always execute the sequential part. A typical expansion of the barriers follows.

C Begin Barrier

CALL Bar_entry

if (id .eq. 1) then

C

[< optional sequential code block >]

End Barrier

CALL Bar_ignal

end if i

Appendix A

-29-

barlin

**

* barlin: linear (pre-scheduled}, no locks, symmetric structure
**

Subroutine Bar_entry
Shared common/Shbar/logical LARRAY(20}
Private common/Prbar/integer id, np

if (id. eq. 1) then
do 10 i=2,np

20 if{LARRAY{i} .eq..true.) goto 20
10 continue

else

LARRAY{id} = .false.
call Bar_signal
end if
return
end

10

20

Subroutine Bar._ignal
Shared comm<,a]Shbar/logical LARRAY(20)
Private common /Prbar/integer id, np

if (id. eq. 1) then
do 10 i=2,np

LARRAY{i}= .true.
continue

else

if (LARRAY(id} .eq..false.} goto 20
end if
return
end

10

Subroutine Pr_.init(tid,tnp)
integer tid,tnp
Private common]Prbar] integer id, np

id =tid

np = tnp
return
end

Subroutine Sh_init(tnp)
integer tnp
Shared common /Shbar/logical LARRAY(20)

do 10 i = 2,np
LAIRIRAY(i)= .true.

continue
return
end

-30-
AppendixA barlok

**
* barlok:linear[self-scheduled),locks,symmetricstructure

SubroutineBar_entry
Shared common /Shbar/logical ENTRY, EXIT
Shared common/Shbar/integer COUNTER
Private common /Prbar/integer id, np, mycount

10

spinlock(ENTRY)
myeount = COUNTER + I
COUNTER = mycount

if (mycount .,_. "Pi ualock(ENTRY)
if(id.eq. 1) then

if (COUNTER .he. np) goto 10
return

else

spinlock(EXIT)
end if

mycount = COUNTER- 1
COUNTER = mycount
if (mycount .eq. 0) then

unlock(ENTRY)
else

unlock(EXIT)
end if
return
end

Subroutine Bar.,signal
Shared common /Shb.-.r/logical ENTRY, EXIT
Shared common /Shbar/integer COUNTER
Private common /Prbar/integer id, np, myeount

COUNTER = COUNTER- 1

unlock(EXIT)
return
end

Subroutine Pr_init(tid,tnp)
integer tid,tnp
Private common [Prbar/integer id, np, mycount

id = tid

np = tnp
return
end

Subroutine Shinit(tnp)
integer tnp
Shared common/Shbar/logical ENTRY, EXIT
Shared common/Shbar/integer COUNTER

COUNTER = 0

unlock(ENTRY)
unlock(EXIT)
spinlock(EXIT)
return
end I

I

-31-
Appendix A bartre

**

* bartre: tree structured, no locks, symmetric structure
**

Subroutine Bar_entry
Shared common/Shbar/logical LARRAY(20)
Private common/Prbar/integer id, np, lira

10 lira = lim/2
20 if (id .le. lim) then

if ((id+lim} .gt. np) goto 10
30 if (LARRAY(id+Iim) .eq..true.) goto 30

_oLo iO
end if

LARRAY(id) = .false.
if (id .ne. 1) call Bar.signal
return
end

Subroutine Bar__ignal
Shared common/Shbar/logical LARRAY(20)
Private common/Prbar/integer id, np, iim

if (id .ne. 1) goto 10
lim = 1 i

goto 30
10 if (LARRAY(id} .eq..false.) goto 10
20 lim=lim * 2

30 if((id+lim) .le. np) then
LARRAY(id+Iim) = .true.
goto :20

end if
return
end

**

Subroutine Pr_init(tid,tnp)
integer tid,tnp
Private common/Prbar/integer id, np, lim

id = rid

np = tnp
C initialize limsuchthat: lim=2**n >= np > 2**(n-l)

lira = I

10 if (lira .It. np) then
lira = lira * 2

goto 10
end if
return
end

10

Subroutine Sh._init(tnp)
integer tnp
Shared common/Shbar/logical LARRAY(20)

do 10 i=2,np
LARRAY(i)= .true.

continue
return
end

Appendix A

-32-

bartrl

**

* bartrl: tree structured, locks, symmetric structure
**

Subroutine Bar_entry
Shared common/Shbar/logical INARRAY(20), OUTARRAY(20)
Private common/Prbar/integer id, np, lim

10 lira=lira/2
20 if (id .le. lira) then

if ((id+lim) .gt. np) goto 10
30 spinlock(INARRAY(id+lim))

goto 10
end if

unlock(INARRAY(id))
if (id .ne. 1) CALL Bar_signal
return
end

Subroutine Bar_ignal
Shared common/Shbar/logical INARRAY{20), OUTARRAY(20)
Private common /Prbar/integer id, np, lim

if (id .ne. 1) goto 10
lira = 1
goto 30

10 spinlock(OUTARRAY(id))
20 lim = lim*2

30 if((id+lim} .le. np) then
unlock (OUTARRAY(id +lira))
goto 20

end if
return
end

**

Subroutine Prinit(tid,tnp)
integer tid,tnp
Private common/Prbar/integer id, np, lim

id = tid

np = tnp
C initialize limsuch that: lim=2**n >= np > 2"*(n-1)

lim = 1

10 if (lira .It. np) then
lim = lim * 2

goto 10
end if
return
end

10

Subroutine Sh_init(tnp)
integer tnp
Shared common /Shbar/logical INARRAY(20), OUTARRAY(20)

do 10 i= 1,rip
unlock(INARRAY(i))
unlock(OUTARRAY(i))
spinlock (INARRA Y(i))
spinloek (OUT AaaA Y (i))

continue
return _
end

Appendix A

-33-
bbrlin

* bbrlin: linear (pre-scheduled), no locks, broadcast exit
*********************************$*******$*$**$*$$****************************

Subroutine Bar_.entry
Shared common /Shbar/logical LARRAY(20)
Private common/Prbar/integer id, np, polarity

if lid .eq. l) then
do 10i = 2,np

'2,0 if (LARRAY(i) ,he. polarity) goto 20
10 continue

else

LARRAY(id) = polarity
polarity = .not. polarity

30 if (LARRAY(1) .eq. polarity) goto 30
end if
return
end ":

Subroutine Bar_ignal
Shared common /Shbar/logical LARRAY(20)
Private common/Prbar/integer id, np, polarity

LARRAY(1) = polarity
polarity = .not. polarity
return
end

Subroutine Pr..jnit(tid,tnp)
integer tid,tnp
Private common/Prbar/inte#r id, rip, polarity

id = tid

np = tnp
polarity = .true.
return
end

10

Subroutine Sh_init(tnp)
integer tnp
Shared common /Shbar/logical LARRAY(20)

do l0 i= 1,np
LARRAY(i)= .false.

continue
return
end

-34-
AppendixA bbrlok

* bbrlok: linear (self-scheduled), locks, broadcast exit

Subroutine Bar_entry
Shared common/Shbar/logical ENTRY, EXIT
Shared common /Shbar/integer COUNTER
Private common /Prbar/integer id, np, polarity

if (id .eq. 1) then
10 if (COUNTER .he. 0) goto 10

else

,vpinlock (ENTRY)
COUNTER = COUNTER- 1
unlock(ENTRY)
polarity = .not. polarity

20 if (EXIT .eq. polarity) goto 20
end if
return
end

Subroutine Bar.,signal
Shared common/Shbar/logical ENTRY, EXIT
Shared common /Shbar/integer COUNTER
Private common /Prbar/integer id, np, polarity

COUNTER = np- 1
EXIT = polarity
polarity = .not. polarity
return
end

Subroutine Pr_init(tid,tnp)
integer tid,tnp
Private common [Prbar/integer id, np, polarity

id = rid

np = tnp
polarity = .true.
return
end

Subroutine Sh_init(tnp)
integer tnp
Shared common /Shbar/logical ENTRY, EXIT

COUNTER = rip-1
EXIT = .false.

unlockIENTRY}
return
end

-35-
AppendixA bbetre

* bbrtre: tree structured, no locks, broadcast exit

Subroutine Bar_entry
Shared common/Shbar/logical LARRAY(20)
Private common/Prbar/integer id, np, lim, polarity
Private integer ilim, isum

ilim = lira

goto 20

10 ilim = ilim/2
20 if (id .le. ilim) then

isum = id + ilim

if (isum .gt. np) goto 10
30 if (LARRAY(isum) .he. polarity) goto 30

goto 10
end if

if (id .he. 1) then
LARRAY(id} = polarity
polarity = .not. polarity

40 if (LARRAY(1) .eq. polarity} goto 40
end if
return
end

Subroutine Bar_,signai
Shared common/Shbar/logical LARRAY(20)
Private common/Prbar/integer'id, np, lim, polarity

LARRAY(I) = polarity
polarity = .not. polarity
return
end

Subroutine Pr_init(tid,tnp)
integer tid,tnp
Private common/Prbar/integer id, rip, lim, polarity

id = tid

np =tnp
polarity = .true.

C initialize lim such that: lim=2**n < np <= 2**(n+l)
lim = 1

10 if (lim .It. np) then
lira = lira * 2

goto 10
end if

lira = lim / 2
return
end

2O

Subroutine Sh_init(tnp)
integer tnp
Shared common /Shbar/logical LARRAY(20)

do 20i = 1,tnp
LARRAY(i) = .false.

continue
return

end

AppendixA

-35-
bbrtrl

* bbrtrl: tree structured, locks, broadcast exit
**

Subroutine Bar..entry

Shared common/Shbar/logical INARRAY(20)
Private common /Prbar/integer id, np, iim, polarity
Private integer ilim, isum

ilim=lim

goto 20
10 ilim = ilim/2
20 if (id .le. ilim) then

isum = id + ilim

if (isum .gt. rip) goto 10
30 spinlock(INARRAY(isum))

goto 10
end if

if (id .ne. 1) then
unlock(INARRAY(id))
polarity = .not. polarity

40 if (INARRAY(1) .eq. polarity) goto 40
end if
return
end

Subroutine Bar_signal
Shared common /Shbar/ logical INARRAY(20)
Private common /Prbar/integer id, np, lim, polarity

INARRAY(1) = polarity
polarity = .not. polarity
return
end

Subroutine Pr_init(tid,tnp)
integer tid,tnp
Private common/Prbar/integer id, np, lira, polarity

id = tid

np = tnp
polarity = .true.

C initialize lim such that: lim=2**n < np <= 2**(n+l)
lim = 1

10 if (lira .It. np) then
lim = lim * 2

goto 10
end if

lim = lim / 2
return
end

10

Subroutine Sh_jnit(tnp)
integer trip
Shared common/Shbar/logical INARRAY(20)

INARRAY(1) = .false.
do 10 i=2,np

unlock(INARRAY(i))
spinlock (INARRA Y (i))

continue
return
end

-37-

Appendix B

Compiler issues: optimized out references to shared data?

Consider the following two lines of Fortran code. Statement pairs like this can
occur in several of the barriers that have been developed in this paper.

flag ---.true.
10 if (flag .eq..true) goto 10

If flag is a shared variable, and another process is expected to set flag to false,
then wc see that this pair of statements is perfectly reasonable. However, if a conven-
tional high performance optimizing compiler got hold of these two lines, then it might
well optimize out the second reference to flag, causing an infinite loop.

What is needed is a new generation of compilers designed for parallel languages.
Such compilers would be free to fully optimize references to private variables, storing
them in machine registers, etc. But, compilers for parallel languages should, in gen-
eral, never optimize out references to shared variables in the code that they produce.

Since many present compilers do not meet this requirement, it may be necessary
to fool a compiler, so that it will not remove memory references to shared variables.
One simple way to do this is to put one or both of the statements in the ab(_ve exa_nple

into a subroutine. For a language Such as Fortran, assuming paramet, ers ar_ passe_t by
address (and not with copy-restore), this quick fix is sufficient to insdre tha_ all
required references to shared variables actually occur. This is the approach that has
been adopted for the algorithms coded in Appendix A. A second alternative is to code
in assembly language. Still another alternative is to thoroughly understand the com-
piler to be used, before programming in a compiled high level language.

Report Documentation Page
t_t_] _u_*r_aut_s aft1

1. Report No.
N_SA CR-178377

[CASE Report No. 87-65

2. Government Accession No.

4. Title and Subtitle

COMPARING BARRIER ALGORITHMS

7. Author(s)

Norbert S. Arenstorf, Harry F. Jordan

9. Performing Organization Name and Address

Institute for Computer Applications in Science

and Engineering

Mail Stop 132C, NASA Langley Research Center

Hampton. VA 23665-5225
12. Sponsoring Agency Name and Add_ss

National Aeronautics and Space Administration

Langley Research Center

Hampton, VA 23665-5225

3. Recipient's Catalog No.

5. Report Date

September 1987

6. Performing Organization Code

8. Performing Organization Repo_ No.

87-65

10. Work Unit No.

505--90--21--01

11. Contact or Grant No.

NASI-18107

13. Type of Report and Period Covered

Cnntr_tnr P_=nnrt
14.SponsoringAgency Coae

15. Supplementaw Notes

Langley Technical Monitor:

Richard W. Barnwell

Final Report

To be submitted to Parallel

Computing and/or Journal of

Parallel and Distributed

Computing

16. Abstract

A barrier is a method for synchronizing a large number of concurrent

computer processes. After considering some basic synchronization mechanisms, a

collection of barrier algorithms wlth either linear or logarithmic depth wlll be

presented. A graphical model is described that profiles the execution of the

barriers and other parallel programming constructs. Thls model shows how the

interaction between the barrier algorithms and the work that they synchronize

can impact their performance. One result Is that logarithmic tree structured

barriers show good performance when synchronizing fixed length work, while

linear self-scheduled barriers show better performance when synchronizing fixed

length work with an imbedded crltlcal section. The linear barriers are better

able to exploit the process skew associated wlth critical sections. Timing

experiments, performed on an eighteen processor Flex/32 shared memory multi-

processor, that support these conclusions are detailed.

17. Key Words(SuggestedbyAuthor(s))

barrier, synchronization, multi-

processor, shared memory, speedup

18. Distribution Statement !

61 - Computer Programming and i

Software

19. Security Classif. (of this repot)

Unclassified

NASA FORM 1626 OCT 86

Unclasatftefl - .nl tmited
20. Security Classif. (of this page) 21. No. of pages

Unclassified 39

22. Price

A03

